Fast Adaptive Regularization for Perfusion Parameter Computation Tuning the Tikhonov Regularization Parameter to the SNR by Regression

نویسندگان

  • Michael Manhart
  • Andreas Maier
  • Joachim Hornegger
  • Arnd Doerfler
چکیده

Computation of perfusion parameters by deconvolution from contrast-enhanced time-resolved CT or MR perfusion data sets is an ill-conditioned problem. Thus, adequate regularization and determination of corresponding regularization parameters is required. We present a novel method for Tikhonov regularization for perfusion imaging to locally adapt parameters to the SNR level by using a regression function. In an numerical evaluation our simple approach provided similar or even superior results compared to methods applying computationally more demanding L-curve analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic estimation of regularization parameter by active constraint balancing method for 3D inversion of gravity data

Gravity data inversion is one of the important steps in the interpretation of practical gravity data. The inversion result can be obtained by minimization of the Tikhonov objective function. The determination of an optimal regularization parameter is highly important in the gravity data inversion. In this work, an attempt was made to use the active constrain balancing (ACB) method to select the...

متن کامل

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

On a generalization of Regińska's parameter choice rule and its numerical realization in large-scale multi-parameter Tikhonov regularization

A crucial problem concerning Tikhonov regularization is the proper choice of the regularization parameter. This paper deals with a generalization of a parameter choice rule due to Regińska (1996) [31], analyzed and algorithmically realized through a fast fixed-point method in Bazán (2008) [3], which results in a fixed-point method for multi-parameter Tikhonov regularization called MFP. Like the...

متن کامل

A numerical approach for solving a nonlinear inverse diusion problem by Tikhonov regularization

In this paper, we propose an algorithm for numerical solving an inverse non-linear diusion problem. In additional, the least-squares method is adopted tond the solution. To regularize the resultant ill-conditioned linear system ofequations, we apply the Tikhonov regularization method to obtain the stablenumerical approximation to the solution. Some numerical experiments con-rm the utility of th...

متن کامل

Computation of Regularization Parameters Using the Fourier Coefficients

In the solution of ill-posed problems by means of regularization methods, a crucial issue is the computation of the regularization parameter. In this work, we focus on the Truncated Singular Value Decomposition (TSVD) and Tikhonov method, and we define a method for computing the regularization parameter based on the behavior of Fourier coefficients. We compute a safe index for truncating the TS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014